Apple Il Pascal

~ Numerics Manual:

A Guide to Using
the Apple Ill Pascal

SANE and Elems Units




~

Ve A re



Preface

This manual describes the SANE unit, which provides new data types and
an extended-precision arithmetic system based on the proposed IEEE
Standard, and the Elems unit, which provides mathematical and financial
functions not previously available to Pascal users.

The manual is for these groups of Pascal users:

Those who must calculate with more than seven decimal digits of
precision.

- Those who need extended-precision intermediate results, such as
statisticians,

- Those who must compute exactly with large integral values, such
as writers of accounting programs.

- Those who do financial computations, using data provided by
accounting programs.

This manual is a companion to the Apple III Pascal Programmer's Manual.
Before reading this manual, you should be familiar with the Pascal
language and the use of the Apple III Pascal Development System. These
are documented in the Apple III Pascal manuals, including the Apple III
Pascal 1.1 Update Manual.

If you have read Appendix E ('"'Floating Point Arithmetic'") of the Pascal
Programmer's Manual, you will find much familiar material in this
manual. However, you will also see certain differences:

- We have added two new data types, Double and Extended, to
provide extended-precision arithmetic. We have also added a
new accounting data type, Comp, which is not required by the
Standard.

- We have removed projective and warning modes, as they have been
removed from the Standard.

- We have chosen the names of reserved words so that both the
SANE and RealModes units can be used simultaneously.



vi

Preface

The Eye Symbol

Throughout this manual, the eye symbol is used to draw your attention to
important items of information.

Watch out! The eye indicates points you need to be cautious

-about.

Gray Sections

Any chapter or section printed on a gray background discusses advanced
features. You can skip these parts on a first reading, and refer to
them later as needed. A casual user will have little need of these
parts of the manual. A numerical analyst will use them heavily.



Contents

Preface

1

"4

Casual User’s Guide

1 _Introduction and Overview

2  Examples

5 Questions and Answers about SANE

Data Types 9
9 Single, Double, Comp, and Extended

9 Choosing a Data Type

10 Values Represented

11 Table of Types
Arithmetic Operations 13
13 Add, Subtract, Multiply, and Divide

14 Remainder

14  Square Root

Conversions 17
17 Conversions to and from Extended

18 Exceptions

18 Conversions Between Binary and Decimal

18 Converting Decimal Strings into SANE Types

19 Converting SANE Types into Decimal Strings

20 Decimal Record Conversions

Expression Evaluation 23
23  Examples

26 Global Constants

Comparisons 27

27 Comparison Functions
28 Comparisons Involving Infinities and NaNs



iv

Contents

G m T OW>x

Infinities, NaNs, and

Denormalized Numbers 29
29 Infinities
29 NaNs

30 Denormalized Numbers
31 Inquiries: NumClass and the Class Functions

Environmental Control 33

"33 Rounding Direction

34 Exception Flags and Halts
35 Exceptions
36 Managing Environmental Settings

Auxiliary Procedures 37
37 Round to Integral Value

37 Sign Manipulation

38 Next-After

38 Special Cases and Exceptions in Next-After Procedures
39 Binary Scale and Log
The Elems Unit 41

41 Logarithms
42 Exponentials
43  Financial Functions

43 Compound Interest

45 Value of an Annuity

The SANE and Elems Interfaces 49
Installing the SANE and Elems Units 55
SANE and Apple lll Pascal RealModes 57

57 Different Floating-Point Environments
59 Conversions Between Real and Single

Managing the SANE Floating-Point

Environment 61
Conversions Between Long Integer

and Comp 65
Errors in SANE and Elems 67
Annotated Bibliography | 69
Glossary 73

Index 77




1

Casual User’s Guide

Introduction and Overview

This manual describes two new Apple III Pascal units, SANE, which
supports the Standard Apple Numeric Environment (S.A.N.E.), and Elems,
which computes some useful financial and mathematical functions.

As its name implies, we plan to support S.A.N.E. across several future
Apple products. S.A.N.E., gives you access to numeric facilities
unavailable on almost any computer of the early 1980's--from
microcomputers to extremely fast, extremely expensive supercomputers.
The core features of S.A.N.E. are not exclusive to Apple; rather they
are taken from Draft 10.0 of Standard 754 for Binary Floating-Point
Arithmetic as proposed to the Institute of Electrical and Electronics
Engineers (IEEE). Thus SANE is one of the first widely available
products with the arithmetic capabilities destined to be found on the
computers of the mid-1980's and beyond. Apple first supported the
proposed IEEE Standard in its initial release of Apple III Pascal, which
included a single-precision implementation of Draft 8.0 of the Standard.

The IEEE Standard specifies standardized data types, arithmetic, and
conversions, along with tools for handling limitations and exceptions,
that are sufficient for numeric applications. SANE and Elems go beyond
the specifications of the IEEE Standard by including a data type
designed for accounting applications and by including several
high-quality library functions for financial calculations.

The proposed IEEE arithmetic was specifically designed to provide
advanced features for the numerical analyst without imposing any extra
burden on casual users. (This is an admirable but rarely attainable
goal; text editors and word processors, for example, typically suffer
increased complexity with added features, meaning more hurdles for the
novice to clear before completing even the simplest tasks.) The
independence of elementary and advanced features of the IEEE arithmetic
was carried over to the SANE unit, so that casual users need not master
advanced features.



2 Casual User's Guide

If you are familiar with Pascal, you should be able to use SANE just on
the basis of the terse comments in the INTERFACE found in Appendix A.
The rest of this chapter is an overview of SANE by means of examples. and
dialogue., We encourage you to refer to Appendix A while perusing the
examples.

Examples

Two examples, a Pascal program and a Pascal unit, demonstrate the use of
SANE. We encourage you to type in these examples, to compile them, and
in the case of the program, to execute the code file while following the
discussion. (Before you can do this, you will need to install the SANE
unit into your SYSTEM.LIBRARY, as explained in Appendix B.)

Example 1

This program reads an input string representing a floating-point value
and echoes it to the screen, It demonstrates how data types are
declared in SANE, and how values can be accepted on input and displayed
on output,

program EchoNumber;

Uses
SANE;

Var

T InStr, OutStr : DecStr; { Input and output strings. }
X : Single; { Single value of InStr. }
f : DecForm; { Specifies output format. }

begin {-EchoNumber }

f.style := FLOAT; { Floating output format. }
f.digits := 9; { 9 significant digits. }

write ('Enter number: ');

readln (InStr); { Read first input string. }

while InStr <> '' do begin
Str2S (InStr, X); { Convert input to Single value X. }
S2Str (f, X, OutStr); { Convert X to string by f. }
writeln (OutStr);
write ('Enter number: ');
readln (InStr) { Read next input string. }

end

end { EchoNumber } .



Examples 3

In the program EchoNumber note that

- the input and output strings (InStr and OutStr) are of type
DecStr, a Pascal string type defined by the SANE unit;

- a variable X of type Single (defined in Chapter 2) has been
declared to hold the value of the input string;

- the variable f is of type DecForm, which specifies the format
of the output string. 1In this case, f is assigned so that the
output will be in FLOAT format (as opposed to FIXED), and will
show 9 significant digits;

- the SANE routine Str2S converts the ASCII characters from the
input string InStr to the Single value X; and

- the SANE procedhre S§2Str converts the Single value X to the
output string OutStr. The format of this string is determined
by the value of f.

Throughout SANE and Elems, the names of procedures reflect the data
types involved. For example, Str2S converts to Single. There are also
procedures Str2D, Str2C, and Str2X for converting to the other SANE
data types Double, Comp, and Extended, respectively.

Now compile and execute the program, trying out various input values.
You will note (for instance) that the input string '0.5' is echoed (as
you would expect) as '5.00000000E-1', whereas the input value '0.1" is
echoed as '1.00000001E-1'. The source of this apparent anomaly will be
discussed in Chapter 4,

Example 2

The second example shows the use of SANE from another unit. If you are
unfamiliar with Pascal units, you may want to refer to Volume 1 of the
Apple III Pascal Programmer's Manual. This example also shows how
expression evaluation is accomplished using Extended intermediate
variables.

The unit provides a procedure to evaluate the dot product of two
vectors. The input vectors v and w (of type Vector) are represented as
arrays of Single values. The desired result is the Single valve z. In
order to compute the value of z with maximum accuracy, all of the
intermediate calculations are performed in extended precision. This
feature is at the heart of the design of the SANE unit.



4 Casual User's Guide

UNIT DotProd;

INTERFACE

Uses
SANE;

N = 20; { Size of Vector. }

Type
Vector = array [1..N] of Single;

Procedure DotProduct (v, w : Vector; var z : Single);

IMPLEMENTATION

Procedure DotProduct { (v, w : Vector; var z : Single) };

{ Returns the dot product of v and w in z,
accumulated in Extended and returned in Single. }

var

s, t : Extended;
i 1..N;

begin { DotProduct }
12X (0, s); v {s <=0}

for i :=1 to N do begin

S2X (v [1], t); c{t K== v [i] }
Muls (w [i], t); {t <—=v [i] * w [i] }

{ Accumulate in Extended. }
AddX (t, s) {s<K-5s5 +t }

end;
X2S (s, z) { Produce Single result. }
end { DotProduct } ;

END { DotProd } .

In the procedure DotProduct note that

= the sum s is initialized to zero using I2X (I2X provides
convenient and efficient assignment of integral constants to
Extended);



Examples

a Single value from v is converted to extended precision in the
temporary variable t. This conversion is performed by S$2X and
is exact (as will be discussed in Chapter 4);

- t is directly multiplied by the corresponding value from w,
leaving the extended-precision result in t;

= the sum is accumulated in extended precision by adding t
directly to the Extended value s;

- when the loop completes, the sum in s is converted, using X2S,
to the desired Single result z;

= all of the basic arithmetic operations in the SANE unit on two
values are two-address operations; that is, the operation is
performed on the two inputs and the result is stored in the
second argument (as in MulS and AddX in the example);

- all arithmetic operations are performed in extended precision
and the result is returned in Extended(the reasons for this
type of arithmetic are discussed below);

—- the names of the procedures again reflect the type of the input
argument; that is, MulS multiplies an Extended by a Single,
AddX adds an Extended to an Extended, and X2S converts an
Extended to a Single. '

Questions and Answers
about SANE

In this section, we answer several questions about SANE, to explain the
intent of the numeric environment SANE provides, before explaining that
environment in detail in the following chapters.

Does SANE provide IEEE-conforming arithmetic?

SANE supports all of the features of Draft 10.0 of the proposed
Standard, with the exception of rounding precision. SANE supports the
required data types, exceptions and rounding directions; conversions
between binary and decimal; comparisons; denormalized numbers and the
treatment of gradual underflow; as well as the basic arithmetic
operations add, subtract, multiply, divide, square root, exact absolute
remainder, and round to an integral value. In addition, the unit
provides operations that are only recommended, including negate,
absolute value, copy-sign and next-after. These operations are all
implemented to the strict specifications of the proposed Standard. The
implementation has been completely validated by test procedures
developed by members of the Standard Committee.



6 Casual User's Guide

Doesn’t Pascal 1.0 already have floating point?

Pascal 1.0 interpreter—based arithmetic and the RealModes unit are based
upon Draft 8.0 of the Standard. This implementation contains only
single-precision (32-bit) real arithmetic and remains unchanged in
Pascal 1.1. A number of changes to the proposed Standard have been made
since Draft 8.0. Appendix C describes the differences between the

arithmetic implemented by the Pascal interpreter and RealModes, and the

How is the SANE unit different? Why is it better?

The arithmetic implemented by the SANE unit conforms to Draft 10.0 of
the proposed Standard. It supports Single and Double data types using
extended-precision arithmetic. 1In addition, SANE provides a new data
type, Comp, for performing integral arithmetic with up to 18 digits of
precision. Like Single and Double, Comp is a storage type for Extended
arithmetic., This type has been added to allow application writers to
compute, for instance, accounting quantities, with the required
accuracy, and within the same framework to use these values for
financial applications, such as computing compound interest to double
precision. The default modes are set so that the system is closed and
non-stop, in the sense that any SANE operation will produce a
predictable result in all cases, without causing any run-time errvors.
Even under conditions such as overflow or division-by-zero, an operation
will deliver a well-defined result and set exception flags, and
computation will continue. The exception flags may either be
interrogated or ignored at the programmer's choice, but no fatal error
will occur.

Why is SANE implemented using procedure calls
instead of infix operators?

The SANE unit represents the first step in making the Standard Apple
Numeric Environment available to Apple III Pascal users. Apple intends
to support this environment across several future products, including
full integration into the Pascal language. Expression evaluation using
the SANE procedure calls is cumbersome compared with the simple and more
natural notation used by the Pascal 1.0 and 1.1 single-precision real
arithmetic. However, whether you use the SANE unit should be determined
by the requirements of your application (this point is discussed in more
detail in Chapter 2).

Why is the destination of SANE
operations Extended?

Arithmetic operations in SANE are based around extended precision for
several reasons., The Extended type is the type in which arithmetic is
performed, and the types Single, Double, and Comp are considered to be
storage types for application data. Conversion of Single, Double, and
Comp to and from Extended is exact and causes no loss of accuracy. This
style of arithmetic allows operations, such as the vector dot product



Questions and Answers about SANE 7

given in Example 2 above, to be computed using an Extended temporary
variable with minimum loss of accuracy, improving the quality of the
possibly less precise end result (in Fxample 2, the end result was
Single). The general approach of using Extended-based arithmetic
follows that of forthcoming hardware chips for IEEE floating-point.
Also, the unit interface is much simpler than it would be if operations
of lesser precision were included.






10 Data Types

- memory usage; and
- computational speed.

The precision, range, and memory usage for each SANE data type are shown
in the table below. See the section "Conversions Between Binary and
Decimal" in Chapter 4 for information on conversion problems relating to
precision,

Most accounting applications require a counting type that counts things
(pennies, dollars, widgets) exactly. Accounting applications can be
implemented by converting money values into integral numbers of cents or
mils, which can be stored exactly in the Comp format. The sum,
difference, or product og3any two Comps is exact if the magnitude of the
result does not exceed 2~ - 1 (that is, 9,223,372,036,854,775,807).
This number is larger than the national debt, expressed in Argentine
pesos. In addition, Comp values can be used in SANE floating-point
computations, such as interest and tax evaluations,

Comp-type arithmetic is done internally using the Extended data type.
There is no loss of precision, as conversion from Comp to Extended is
always exact. However, some space can be saved by using the Comp type,
rather than the Extended type, for storing numbers: the Comp type is
20% shorter, as it has no exponent. Non-accounting applications will
normally be better served by the floating-point data formats.,

' Values Represented

The floating-point storage formats, Single, Double, and Extended,
provide binary encodings of a sign (+ or =), an exponent, and a
significand. A represented number has the value

+significand * pexponent

where the significand has a single bit to the left of the binary point
(that is, 0 <= significand < 2).



Table of Types : 11

Table of Types

This table describes the range and precision of the numeric data types
supported by SANE.

- -t s > G S - - o > > - - P - - - - oo e

Type class Pascal Application Arithmetic
Type identifier integer Single Double Comp Extended
Size
(bytes:bits) 2:16 4:32 8:64 8:64 10:80
Binary exponent
range
Minimum —— -126 -1022 -—— -16383
Maximum s me— 127 1023 - 16383
Significand
precision
Bits 15 24 53 63 64
Decimal digits 45 7-8 15-16 18-19 19-20
Decimal range
Min negative -32768 | -3.4E+38 | -1.7E+308| =-9,2E18 |-1.1E+4932
Max neg norm -1,2E-38 | -2.3E-308 -1.7E-4932
Max neg denorm | =1.5E-45 | =5.0E-324 -1.9E-4951
*
Min pos denorm 1.5E-45 5.0E-324 1.9E-4951
Min pos norm 1.2E-38 2.3E-308 1.7E-4932
Max positive 32767 3.4E+38 1.7E+308| & 9,2E18 1.1E+4932
5 - -

Infinities No Yes Yes No Yes
NaNs* No Yes Yes Yes Yes

- - e o

Denormalized numbers, or denorms, are defined in Chapter 7.

Usually numbers are stored in a normalized form, to afford maximum
precision for a given significand width. Maximum precision is achieved
if the high order bit in the significand is 1 (that is,

1 <= significand < 2).




12 Data Types

Example
In Single, the largest representable number has
significand = 2 - 2723
= 1.111111111111111111111112
exponent = 127
value = (2 - 2_23) * 2127
= 3.403 * 10°8

the smallest representable positive normalized number has

significand = 1

= 1.000000000000000000000002
exponent = -126
value = 1 * 2"126

= 1,175 * 10738

and the smallest representable positive denormalized number (see
Chapter 7) has ’ L

significaﬁd : §oms 2"23 v

‘ o og000000600000000600600012f~‘.'f
exponent ‘ ‘ : —126 . : L
value sl = 117t2723ff;2-12§€ ./:

1.401 % 1074



3

Arithmetic Operations

This section discusses the arithmetic operations, add, subtract,
multiply, divide, remainder, and square root. Exceptional cases for
these operations are covered in Chapters 7 and 8.

Add, Subtract, Multiply, and Divide

The arithmetic operations add, subtract, multiply, and divide are
provided by sixteen procedures (see Appendix A):

AddS, AddD, AddC, AddX;
SubS, SubD, SubC, SubX;
MulS, MulD, MulC, MulX;
DivS, DivD, DivC, DivX.

Each procedure has two operands. The first is always a value parameter
of type Single, Double, Comp, or Extended, as indicated by the last
letter of the procedure name. The second is always a variable parameter
of Extended type that receives the result., For example, subtraction is
provided by the procedures SubS (subtract Single), SubD (subtract
Double), SubC (subtract Comp), and SubX (subtract Extended). If x and y
are declared by

var x : Single;
y : Extended;

then the statement
SubS (x, vy); {y &=y -x1}

causes x to be subtracted from y and the extended-precision result
to be stored in y.

Example

To compute q :=a / b , where a, b, and q are of type Double,
declare:



14 Arithmetic Operations

var a, b, q : Double;
t : Extended; { extended temporary }

and write:

D2X (a, t); { t <~- a }
DivD (b, t); {t<=a/ b}
X2D (t, q); { g <=t }

Remainder

The remainder operation is provided by the one procedure
procedure RemX (x : Extended; var y : Extended; var quo : integer);
The result delivered to y is the remainder r specified as follows:

When x is not equal to 0, the remainder r = y REM x is defined
regardless of the rounding direction by the mathematical relation
r =y = x *n, where n is the integral value nearest the exact
value y / x; whenever | n -y / x | = 1/2, n is even. The
remainder is always exact., If r = 0, its sign is that of y.
(Rounding direction is defined in Chapter 8.)

The third argument, quo, delivers the integer whose magnitude is
given by the seven least significant bits of the magnitude of n,
and whose sign is the sign of n. (Quo is useful for reducing the
arguments of trigonometric functions, but can be ignored if not
needed.)

The IEEE remainder function differs from other commonly used

remainder functions. It is chosen because it is always exact and
because all the other remainder functions can be built from it.

Square Root

The square root operation is provided by
procedure SqrtX (var x : Extended);

for any x >= 0., The argument x is both source and destination.
The square root of -0 is -0,



Square Root 15

Example

To find v := square root of u , where u and v are of type Single,
declare

var u, v : Single;
t : Extended; { extended temporary }
and write
§2X (u, t); {t <——~u }
SqrtX (t); { t <&~-= sqrt (u) }

X28 (t, v); { v {&~~t }



o




4

Conversions

Conversions to and from Extended

Conversions between the Extended type and the other numeric types
recognized by SANE are provided by the procedures

12X - integer to Extended
S2X - Single to Extended
D2X - Double to Extended

C2X - Comp to Extended

X2X - Extended to Extended
X21 - Extended to integer
X2S - Extended to Single
X2D - Extended to Double
X2C - Extended to Comp

For example, if x and y are declared by

var x : Comp;
y : Extended;

then to convert a Comp-format value in x to an Extended-format in y,
. write

c2X (x, y); {y <= x1}

Note that IEEE rounding into integral formats differs from most common
rounding functions on halfway cases. With the default rounding
direction (TONEAREST), the conversions X21, X2C, Str2C, and Dec2C will
round 0.5 to 0, 1.5 to 2, 2.5 to 2, and 3.5 to 4, rounding to even on
halfway cases. (Str2C and Dec2C are discussed later in this chapter.
Rounding is discussed in detail in Chapter 8).

Conversions between SANE storage types and the Pascal real and
long-integer types are discussed in Appendixes C and E, respectively.



18 Conversions

Exceptions

Conversions to the Extended storage type are always exact. However,

the conversion procedures X2I, X2S, X2D, and X2C move a value from
Extended to a storage type with less range and precision, and set the
OVERFLOW, UNDERFLOW, or INEXACT exception flags when appropriate. As
the integer format does not support NaNs and infinities, X2I sets the
INVALID exception flag if the first operand is a NaN, an infinity, or a
number that overflows. 1In these cases the result stored for the integer
operand is -MAXINT - 1 = =32768, 1If the first operand of X2C is a NaN,
an infinity, or a number that overflows, then the result is the
Comp-type NaN, and for infinities and overflows, the INVALID exception

is signaled. ¥X2X (x, y) sets the INVALID exception flag if x is a
signaling NaN, whereas y := x does not.

Zonversions Between Binary and Decimal

The IEEE Standard for binary floating-point arithmetic specifies the set
of numerical values representable within each floating-point format. It
is important to recognize that binary storage formats can exactly
represent the fractional part of decimal numbers in only a few cases; in
a1l other cases, the representation will be approximate. For example,
3.510, or 1/210, can be represented exactly as 0.1_.. On the other

iand, 0.1, , or 1/101 , is a repeating fraction in binary:
7.00011001100.44.,.. Its closest representation in Single is
).000110011001100110011001101,_, which is closer to 0.100000001491

chan to 0.100000000001 + This explains the apparent anomaly in the
>utput of Example 1 in Chapter 1.

As binary storage formats generally provide only close approximations

o decimal values, it is important that conversion between the two types
Je as accurate as possible., Given a rounding direction, for every
lecimal value there is a best (correctly rounded) binary value for each
binary format. Conversely, for any rounding direction, each binary
ralue has a corresponding best decimal representation for a given
lecimal format. Ideally, binary-decimal conversion should obtain this
rest value to reduce accumulated errors. The IEEE Standard specifies
7ery stringent error bounds on conversions; the conversion routines in
JANE follow more stringent bounds still. (See the IEEE Standard [8] for a
10ore detailed description of error bounds.)

Zonverting Decimal Strings into SANE Types

The procedures Str2S, Str2D, Str2C, and Str2X convert numeric
strings into Single, Double, Comp, and Extended formats, respectively.



Conversions Between Binary and Decimal 19

Example 1

To assign -0.0000253 to an Extended variable x, write

var x: Exteunded;

.

Str2X ('-2.53E-5', x); { or Str2X ('-0.0000253', x); }

These routines are provided as a convenience for those who do not wish
to write their own scanners. The routines parse numeric strings into
binary storage formats. Each routine determines the value of the string
from the longest prefix of the string that is recognized as a number.

If no part of the string is recognized as a number or a null string is
encountered, then the routine returns a zero.

However, if the first character after leading blanks have been

discarded and the optional sign has been parsed is an 'i' or an 1,
then the string is interpreted as an infinity. Likewise, if the first
character after leading blanks have been discarded and the optional sign
has been parsed is an 'n' or an 'N', then the string is interpreted as a
NaN.

The strings described by standard Pascal syntax are a subset of the
strings accepted by these conversion routines. These routines accept
other strings, too (for example, they accept '.3', whereas standard Pascal
requires a leading digit before a decimal point).

The Comp format has no representation for infinities; Str2C
signals INVALID and delivers a NaN whenever the string operand is an
infinity or a number that overflows the Comp format.

Converting SANE Types into Decimal Strings

The procedures $2Str, D2Str, C2Str, aund X2Str will convert a Single,
Double, Comp, and Extended, respectively, into a numeric string (of type
DecStr). As any numeric value can have many decimal representations,
you must specify the decimal result format. To do so, pass a record

of type DecForm, shown below:

DecForm = record
style : (FLOAT, FIXED);
digits : integer
end;

PURERSNE

This record specifies two things:
- style (either FLOAT or FIXED); and
- digits (the number of significant digits for style FLOAT or the

number of digits to the right of the decimal point for style
FIXED). This number may be negative if the style is FIXED.



20 Conversions

Example 2

To print the value of a Double variable y using a fixed-point decimal
format with ten digits to the right of the decimal point write

var y: Double;
s: DecStr;
f: DecForm;

f.style := FIXED;
f.digits := 10;

D2Str (€, y, s);
writeln ('y = ', s);

Numbers that round to zero in the specified DecForm are converted to the
string ' 0.0' or '-0.0'. NaN's are converted to the string " NaN''" or
"-NaN''". (Double quotes are used here because the string contains
single quotes.) Infinities are converted to the string ' INFINITY' or
'~INFINITY'.

All other numbers behave in an intuitive manner as long as the DecForm
specifies no more than 28 significant digits., Otherwise, the formatted
number is padded with zeros where necessary. If the resulting string
1as more than 80 characters, the number is represented in floating-point
1otation, = : e A
All string results have either a leading negative sign or a leading
>lank (thus, columns of numbers will line up regardless of sign).

decimal Record Conversions P v

“he Deciﬁ§i¥recotd t§§e pr6vide§ ankihtérmediate[cahoniCQI%fofm;
(1)%ER i aiiSRRa 0 '

or prdgrémmers‘&ﬁd”Wiéﬁftoidﬁ'tﬁéif:dwn’parsing of numeric input or

ormatting of numeric output. This form is specified in the INTERFACE
.8 below: . s : .

SigDig = string [SIGDIGLEN]; { where SIGDIGLEN = 28 }

Decimal = record '

' X sgn : 0..1; { Sign (0 for pos, 1 for neg). }
exp : integer; { Exponent. }
sig : SigDhig { String of significant digits. }

end;

—

he procedures S2Dec, D2Dec, C2Dec, and X2Dec each converts a Single,
ouble, Comp, or Extended value, respectively, into a record of type



Conversions Between Binary and Decimal 21

Decimal. A DecForm operand (defined in the preceding section) specifies
the format of Decimal. Numbers that round to zero, infinities, and
NaN's are passed to the sig part of the Decimal record as '0', '1', or
'N', respectively, (the exp part of Decimal is unchanged). The maximum
number of ASCII digits passed to sig is 28 and the implied decimal point
is at the right end of sig with exp set accordingly.

The procedures Dec2S, Dec2D, Dec2C, and Dec2X convert a Decimal record
into Single, Double, Comp, and Extended, respectively. The sig part of
Decimal accepts up to 28 significant digits with an implicit decimal
point at the right end; however, the following exceptions are permitted.

- 1If the first ASCII character is '0' (zero), the number is
converted to zero.

- If the first ASCII character is 'N', the number is converted to
a NaN,

- If the first ASCII character is 'I', the number is converted to
an infinity.

- If the destination is a Comp type, an infinity is converted to
a NaN, and the INVALID exception is signaled.

For maximum accuracy, insert or delete trailing zeros for sig in order
to minimize the magnitude of exp. For example, for 1.0E60 set

sig = '1000000000000000000000000000"' (27 zeros) and exp = 33, and for
300E-43 set sig = '3' and exp = -41.

If you are writing a parser and must handle a number with more than 28
significant digits, follow these rules:

Place the implicit decimal point at the right of the 28 most
significant digits.

If any of the discarded digits to the right of the implicit decimal
point are nonzero, then

(1) set the INEXACT exception to TRUE, and

(2) if the number is positive and the rounding mode is UPWARD or
if the number is negative and the rounding mode is DOWNWARD,
then take the successor of the last (28th) ASCII character to
guarantee a correctly rounded result. (The successor of '9'
is ':'.)

The choice of 28 for SIGDIGLEN is peculiar to this implementation of
S.A.N.E. Other implementations may use other values.






5

Expression Evaluation

The SANE floating-point unit is designed to operate on Extended values.
For example, DivD (x, y) operates on the Extended-format value in y by
dividing the Double-format number x into y and leaving the result in y.
To evaluate more complicated expressions, Extended temporaries can be
used.,

Examples

The following examples illustrate extended-based expression evaluation.
The first example uses an Extended accumulator to store the results of
all operations,

Example 1

Compute the value of

(a+b=-¢c)*d+e
f -

r =

where all variables are of Double type.

var a, b, ¢, d, e, £, r : Double;

t : Extended; { extended temporary }
begin

D2X (a, t); {~- a

AddD (b, t); {(~-a+b

SubDd (c, t); (- a+b-c

(a+b=-2¢c) *d

(- (a+b=-=¢c)*d+e

(- ((a+b=-¢c)*d+e)/ £
{--t

MulD (d, t);
Addp (e, t);
DivD (f, t);
X2D (t, r);

P S e N e e
ottt ottt
N\
|
l}
vt St Nt Nt Nt gt gt



24 Expression Evaluation

Note that although the arithmetic style is extended-based, not every
operand need be converted to Extended. 1In the example, only one
explicit conversion to Extended was required.

Example 2

Compute the value of

where a, b, ¢, and r are of Single type.

var a, b, ¢, r : Single;

T tl, t2 : Extended; { extended temporaries }

begin
$2X (b, tl); { t1 <= b }
MulS (b, tl); { t1 <== b"2 }
12X (4, t2); { t2 <-= 4 }
MulS (a, t2); { t2 <~= 4 * 3 }
MulS (e, t2); { t2 <= 4 * a * ¢ }
SubX (t2, tl); { tl <== b"2 = 4 % g * ¢ }
SqrtX (tl); { t]l &= sqrt (b"2 = 4 * a * ¢) }
SubS (b, tl); { t1l <~= ~b + sqrt (b"2 - 4 * g * c) }
S2X (a, t2); { 2 <= a }
Adds (a, t2); { t2 <=~ 2 * 2 }
DivX (t2, tl); { tl <== (-b + sqrt (b"2 - 4 * a * ¢))

/ (2 % a) }

X2S (tl, r); {r<=—-tl }

Exceptional cases include b2 <4 % a * ¢c and a = 0. For information on
now SANE handles these and other exceptions, see Chapters 7 and 8.

(The common formula for a root of a quadratic equation was chosen
solely to illustrate expression evaluation. More accurate methods
2xist for solving this problem.)

-xample 3 (
ivaluate the polynomial

y = ¢ + ¢y * x + ¢y * x2 + .00 +tc_ * x
ind its deriva;ive
+ 2 * ¢

2
Dy := ¢ *x+3*%c, * x4+ .., +n%* <,

1 2

-



Examples 25

where the coefficients ¢, through ¢, are stored in an array of
Single and x, y, and Dy are of type Single.

const NMAX = 100;

var n, i : 0..NMAX;
X, y, Dy : Single;
¢ : array [0..NMAX] of Single;

tl, { For computation of y. }
t2 : Extended; { For computation of Dy.}
I2X (0, tl); B {tl <-=0 }
t2 := tl; e {t2 <=0 }

for 1 := n downto 1 do begin

{ tl == ¢ [1i] + x * t1l }
Muls (x, tl); { t]l <= x * tl }
Adds (c [i], tl); ~ { tl <==¢c [i] + t1 }
{ t2 <= t]l + x * t2 : }
MulS (x, t2); { t2 <==x * t2 }
Addx (tl1, t2) { t2 <= tl + t2 }
end;
{ tl <== ¢ [0] + x * ¢l : }
MulS (x, tl); { t1 <== x * ¢l }
Adds (¢ [0], tl); { t1 <~= ¢ [0] + t1 }
X2s (tl, y); {y <—tl }
X2s (t2, Dy); { Dy <~- t2 }

The method, called Horner's Rule, used to evaluate the polynomials is
based on the polynomial representation

cx *
yi= Coee (le ¥ xtc ()*xtec ) *x+..0 )*x+cy.

It is more efficient than the straightforward computation suggested by
the standard representation, shown at the beginning of the example, and
is conveniently implemented using SANE's extended-based arithmetic.



26 Expression Evaluation

Slobal Constants

To speed up execution, constants in expressions in often-used routines
can be defined globally (outside the routines). For example, if pi is
declared and defined by

var pli : Extended;

. 3 .

begin

Str2X ('3.14159265358979323846"', pi);
then executing
x := pi;
is significantly faster than
| Str2X ('3.14159265358979323846"', x);
defining constants globally is particulariy helpful when the definition
ts via one of the string conversion routines, such as Str2X, which are

lesigned for generality rather than speed. For conversion of iategers,
2X is significantly faster than Str2X.



6

Comparisons

Comparison Functions

Any two floating-point values in the Extended format can be compared
using

function CmpX (x : Extended; r : RelOp; y : Extended) : boolean;
or
function RelX (x, y : Extended) : RelOp;

The RelOp values are

GT greater than

LT less than

GL greater than or less than

EQ equal

GE greater than or equal

LE less than or equal

GEL greater than, equal, or less than

UNORD unordered

Single, Double, or Comp values can be compared by first coaverting them
to Extended. '

Operands are unordered whenever one or both of the operands is a NaN.
(NaNs are discussed in Chapter 7.) For every pair of operand values,
exactly one of the relations LT, GT, EQ, and UNORD is true. The value
of RelX is the appropriate one of these four relations. CmpX (x, r, y)
is true if and only if the relation x r y is true.

Example

If p is greater than q then print 'p > q is TRUE'; otherwise, print
'p > q is FALSE'.



28 Comparisons

var P, q: Extended;

if CmpX (p, GT, q) then
__. writeln ('p > q is TRUE')
else

writeln ('p > q is FALSE');

Note that equivalent results are produced by

if CmpX (p, LE, q) or CmpX (p, UNORD, q) then
e writeln ('p » q is FALSE')

else

writeln ('p > q is TRUE');
>r by
case RelX (p, q) of

GT:
writeln ('p > q is TRUE');
LT, EQ:
writeln ('p > q is FALSE');
UNORD:
begin
SetXcp (INVALID, TRUE); { See next section. }
writeln ('p > q is FALSE')
end { UNORD }

end; { case RelX }

Zompatrisons Involving Infinities and NaNs

‘INFINITY is greater than aﬁy finite number and ~INFINITY. ~-INFINITY is
ess than any finite number and +INFINITY. +INFINITY equals +INFINITY
nd ~INFINITY equals —INFINITY. The zeros, +0 and -0, are equal.

mpX (x, r, y) signals the INVALID (invalid-operation) exception if x or
is a NaN and r is a relational operator involving "<" or ">": namely
T, LT, GL, GE, LE, or GEL.



7

Infinities, NaNs, and
Denormalized Numbers

In addition to the normalized numbers supported by most floating-point
packages, IEEE floating-point arithmetic supports three other kinds of
values: infinities, NaNs, and denormalized numbers.

Infinities

When a SANE operation attempts to produce a number whose magnitude is
too large for its result's format, the result may (depending on the
rounding direction) be a special bit pattern called an infinity. These
bit patterns (as well as NaNs, introduced next) are recognized in
subsequent operations and produce predictable results. The infinities,
one positive and one negative, generally behave as suggested by the
theory of limits. For example, 1 added to +INFINITY yields +INFINITY;
-1 divided by +0 yields -INFINITY; and 1 divided by -INFINITY yields -0.

The modeling of mathematical infinities is not perfect, however: for
example, adding finite numbers can overflow, producing infinities. In
overflows and in many other cases, the infinities may be regarded as
undetermined very large finite numbers.

Each of the storage types Single, Double, and Extended provides unique
representations for +INFINITY and —INFINITY. The Comp type has no
representations for infinities. (An infinity moved to the Comp type
becomes a NaN.)

NaNs

When a floating-point operation cannot produce a meaningful result, the
operation delivers a special bit pattern called a NaN (Not-a-Number) .
For example, 0 divided by O and +INFINITY added to —INFINITY yield NaNs.
A NaN can occur in any of the SANE storage types: Single, Double,
Extended, and Comp. The Pascal integer (16-bit) storage type has no
representation for NaNs. NaNs propagate through arithmetic operations.



30 Infinities, NaNs, and Denormalized Numbers
f

Thus the result of 3.0 added to a NaN is the NaN. If two operands of an
operation are NaNs, the result is one of the NaNs. NaNs are of two
kinds: quiet NaNs, the usual kind produced and propagated by
floating-point operations, and signaling NaNs. ‘When a signaling NaN is
encountered as an operand of an arithmetic operation, the INVALID
(iavalid-operation) exception is signaled and, if no halt occurs, a
quiet NaN is produced for the result., Signaling NaNs could be used for
uninitialized variables. They are not created by any SANE operations.

Denormalized Numbers

Whenever possible, floating-point numbers are normalized to keep the
leading significand bit 1: this maximizes the resolution of the storage
type. In many current systems of floating-point arithmetic, the
smallest representable number is a normalized number with the minimum
exponent; when the result of an operation is smaller than this smallest
normalized number, the system delivers zero as the result.

As an alternative to this flush—to—zero scheme, IEEE-standard
floating-point arithmetic uses gradual underflow. When a number is too
small for a normalized representation, leading zeros are placed in the
significand to produce a denormalized representation. A denormalized
aumber is a non-zero number that is not normalized and whose exponent is
the minimum exponent for the storage type.

The example below shows how a Single value becomes progressively
lenormalized as it is repeatedly divided by 2, with rounding to nearest,

\ = 1.100 1100 1100 1100 1100 1101 * 27'2% (4 = 0.1, * 27122
\, =A/2 =0.110 0110 0110 0110 0110 0110 * 27 28 (underfiow)
\, =A/2 =0.011 0011 0011 0011 0011 0011 * p~126
\3 = Ay/2 =0.001 1001 1001 1001 1001 1010 * 27*?6 (underflow)
-126
\py = A,;/2 = 0.000 0000 0000 0000 0000 0011 * 2
L3 = Ay,/2 = 0.000 0000 0000 0000 0000 0010 * 27126 nderfiow)
4 = Ay3/2 = 0.000 0000 0000 0000 0000 0001 * 9126
95 = A24/2 = 0,0 (underflow)

v ...A24 are denormalized; A24 is the smallest positive denormalized
1Umberc

1thodgh denormalized numbers differ from ordinary normalized numbers in
aving less storage precision, they participate in the arithmetic in a



Denormalized Numbers 31

reasonable way and provide a valuable extension of the range of
floating-point numbers. In some cases, the use of denormalized numbers
allows a program to return an acceptable result, whereas under a
flush~to~zero system the program would have returned a spurious result.

(A program that relies on flush-to-zero to exit a loop when the value of
a variable becomes so small that it underflows may have to be modified
to run correctly under IEEE arithmetic.)

Inquiries:
NumClass and the Class Functions

The functions ClassS, ClassD, ClassC, and ClassX can be used to classify
the value of a variable. These functions are of type NumClass and
return one of the values:

SNAN - signaling NaN

QNAN - quiet NaN

INFINITE - infinity

ZERO - zero

NORMAL - normalized number
DENORMAL - denormalized number

The class functions also return the sign of a value as a variable
parameter,



P



8

Environmental Control

Environmental controls include the rounding direction, as well as
exception flags and their corresponding halts. Except for conversions
between binary and decimal (whose slightly weaker conditions are
described in Chapter 4), all arithmetic operations are computed as if
with infinite precision and then rounded to the destination format
according to the current rounding direction.

Rounding Direction

The rounding directions are of the type
RoundDir = (TONEAREST, UPWARD, DOWNWARD, TOWARDZERO)

The rounding direction affects all conversions and arithmetic operations
except comparison and remainder. The rounding direction is set by the
SetRnd and SetEnv procedures and can be interrogated by the GetRnd
function,

The default rounding direction is TONEAREST. In this direction the
representable value nearest to the infinitely precise result is
delivered; if the two nearest representable values are equally near, the
one with least significant bit zero is delivered. Hence, halfway cases
round to even when the destination is an integer type (X2I, X2C, Str2C,
Dec2C) and when RintX is used. If the magnitude of the infinitely
precise result exceeds the format's largest value (by at least one half
unit in the last place), then the corresponding signed infinity is
delivered.

The other rounding directions are UPWARD, DOWNWARD, and TOWARDZERO.
When rounding UPWARD, the result is the format's value (possibly
INFINITY) closest to and no less than the infinitely precise result.
When rounding DOWNWARD, the result is the format's value (possibly
-INFINITY) closest to and no greater than the infinitely precise result.
When rounding TOWARDZERO, the result is the format's value closest to
and no greater in magnitude than the infinitely precise result. To
truncate a number to an integral value, use TOWARDZERO rounding with
X2I, X2C, Str2C, Dec2C, or RintX.



34 Environmental Control

=xample
"he common rounding function specified by

trunc (x + 0.5), if x >=0

Rnd (x) =
“trunc (x - 0.5), if x < O

:an be implemented by
function Rnd (x : Extended) : integer;

{ Sets INVALID and returns -32768 if
x is a NaN or x <= -32768.5 or x >= 32767.5.

Sets INEXACT if
-32768.5 < x < 32767.5 and x is nonintegral.

Sets no other exceptions. }
var t : Extended;
i : integer;
r ¢ RoundDir;
begin { Rnd }

str2X ('0.5', t);

CpySgnX (t, x); { t {<~= +0,5 if x > 0 or x is +0 }

{ t <= =0.5 if x < 0 or x is -0 }

r := GetRnd; { Save rounding direction. }

SetRnd (TOWARDZERO); { Set round-toward-zero. : )

AddxX (x, t); {t—x+t » }

X2I (t, 1); : - { i <=~ truncate (t) }
12X (i, t); - ' { No exceptions! o ' }
SetXcp (INEXACT not (Cme (t;“EQ, %) or: Testch (INVALID)));”

: { Correct INEXACT setting. }

SetRnd (r); { Restore rounding direction. '}

}

Rnd := i { On INVALID, i <-- -32768.

end { Rnd } ;

:xception Flags and Halts

he exception flags are values of the type

Excepﬁion = (INVALID, UNDERFLOW, OVERFLOW, DIVBYZERO, INEXACT)

hese five exceptions are signaled when detected, and if the
orresponding halt is set the program will halt. Initially all

xception flags and halts are cleared. You can examine or set

1dividual exception flags and halts using TestXcp and TestHlt functions



Exception Flags and Halts 35

and SetXcp and SetHlt procedures. The SetEnv and GetEnv procedures can
be used to set or get the entire envirounment (rounding direction,
exception flags, and halts).

Exceptions

The INVALID (invalid operation) exception is signaled if an operand is
invalid for the operation to be performed. The result is a quiet NaN,
provided the destination is Single, Double, Extended, or Comp. .The
invalid operations are

1. Addition or subtraction: magnitude subtraction of INFINITIES,
for example, (+INFINITY) + (-INFINITY);

2., Multiplication: O times INFINITY;

3. Division: 0/0 or INFINITY/INFINITY;

4, Remainder: RemX (x, y, q), where 'x' is zero or 'y' is

infinite;
5. Square root if the operand is less than zero;

6. Conversion to an integer or Comp format (procedures X2I, X2C,
Str2C, and Dec2C) when an overflow, infinity, or NaN precludes
a faithful representation in that format (see Chapter 4 for
details);

7. Comparison via predicates involving "<" or ">" when at least
one operand is a NaN; and

8. Any operation on a signaling NaN except the sign manipulation
procedures NegX, AbsX, and CpySgnX, and the class procedures
ClassS, ClassD, ClassX, and ClassC.

The DIVBYZERO (division-by-zero) exception is signaled if a finite
nonzero number is divided by zero. It is also signaled, in the
more general case, when an operation on finite operands produces
an exact infinite result: for example, LogbX (0) returns
-INFINITY and signals DIVBYZERO.

If an operation on finite operands overflows to produce an inexact
infinite result, the DIVBYZERO exception is not signaled.

The OVERFLOW exception is signaled whenever the destination
format's largest finite number is exceeded in magnitude by what
would have been the rounded floating—point result were the
exponent range unbounded.

The UNDERFLOW exception is signaled when a result is both tiny and
inexact (and therefore, perhaps significantly less accurate than



36 Environmental Control

it would be if the exponent range were unbounded). A result is
considered tiny if, before rounding, its magnitude is smaller than its
format's smallest positive normalized number.

The INEXACT exception is signaled if the rounded result of an
»peration is not identical to the mathematical (exact) result or
Lf the result overflows.

Arithmetic on infinities is always exact and therefore signals no

axceptions, except as described in the above section on invalid
perations,

Managing Environmental Settings

lhe environmental settings in the SANE unit are global and can be
axplicitly changed by the user. Thus all routines inherit these
settings and are capable of changing them. If this is undesirable
pecause either (2)a routine requires its ownsettings or (b)a routine's
settings are not intended to propagate outside the routine, then
special precautions must be taken. For example, you may want a
outine to set its own rounding direction and halt settings while
10t influencing the environment of the calling routines. (For a
10re complete explanation and examples, see Appendix D.)



9

Auxiliary Procedures

The SANE Unit includes a set of special routines: " RintX, NegX, AbsX,
CpySgnX, NextS, NextD, NextX, ScalbX, and LogbX. With the exception of
RintX, which is required by the Standard, these routines are only
recommended as aids to programming in an appendix to the Standard.

Round to Integral Value

An Extended variable can be rounded to an integral value by

procedure RintX (var x : Extended);

The integral value is to extended precision, and is set according to the
current rounding direction. The result is returned in the input x.

Sign Manipulation

Procedures NegX, AbsX, and CpySgnX each operate on an Extended variable,
altering only the sign of the Extended argument.

The negation operation is provided by
procedure NegX (XEE x : Extended);

which changes the sign of x.

The absolute value operation is provided by
procedure AbsX (var x : Extended);

which makes the sign of x positive.



8 Auxiliary Procedures

n operation to copy the sign of one Extended variable to the sign of
nother is provided by

procedure CpySgnX (var x : Extended; y : Extended);
hich copies the sign of y into the sign of x.

hese operations are treated as nonarithmetic in the sense that
ignaling NaNs do not signal the INVALID exception.

lext-After

he floating-point values representable in Single, Double, and Extended
ormats constitute a finite set of real numbers. The procedures NextS$,
2xtD, and NextX each generate the next representable neighbor in its
espective format, given an initial value and a direction. The first
rgument (x) to each of these routines is 'bumped' to the next
2presentable value in the direction of the second argument (y). If

= y, the result is x.

procedure Next$S (var x : Single; y : Single);

1e procedure NextS bumps the Single value x to the next representable
ingle value in the direction of y.

procedure NextD (var x : Double; y : Double);

1e procedure NextD bumps the Double value x to the next representable
uble value in the direction of y.

procedure NextX (var x : Eitended; y. : Extended);

e procedure NextX bumps the Extended value x to the next representable
itended value in the direction of y.

secial Cases and Exceptions
Next-After Procedures

e following special cases can arise:
- If x =1y, thevresult is x; no exception is signaled.

- If either x or y is a quiet NaN, the result is one or the other
of the input NaNs.

- If x is finite but the next representable number is infinite,
OVERFLOW and INEXACT are signaled.



Next—-After 39

= If the next representable number lies strictly between -M and
+M, where M is the smallest positive normalized number for that
format, and if x is not equal to y, UNDERFLOW and INEXACT are
signaled.

Binary Scale and Log

Two procedures, ScalbX and LogbX, are provided for manipulating the
binary exponent of an Extended variable.

An Extended variable can be efficiently scaled by a power of two by
procedure ScalbX (n : integer; var y : Extended);

The procedure ScalbX computes y * 2“, and returns it in y. Note

that the magnitude of n can be greater than the largesg binary exponent

in extended precision (that is, 16383), as the value 2 1is not

explicitly computed., 1In fact, a denormalized value y can be scaled by

MAXINT (that is, ScalbX (MAXINT, y)) without causing overflow.

The binary exponent of an Extended variable can be determined by
procedure LogbX (var x : Extended);

The procedure LoghX returns in x the binary exponent of x as a signed

integral value. (When the o0ld x is denormalized, the exponent is

determined as if the 0ld x had first been normalized.)

LogbX of a NaN returns the NaN., LogbX of an infinity is +INFINITY.
LogbX.of zero is -INFINITY and signals the DIVBYZERO exception.






10
The Elems Unit

The Elems unit provides a number of mathematical functions, including
logarithms and exponentials, and two important financial functions. The
logarithms and exponentials are provided in base-2 and base-e versions.

Logarithms

The procedures Log2X, LnX, and LnlX each operate on an Extended
variable, returning the result in the input argument.

The base-2 logarithm log2 x is computed by
procedure Log2X (var x : Extended);

for any non-negative x.

If x = +INFINITY, then Log2X sets x to +INFINITY and sets no exceptions.
If x = 0, then Log2X sets x to =INFINITY and sets the DIVBYZERO

2xception. If x < 0, then Log2X sets x to a NaN and sets the INVALID
axception, :

The natural (base-e) logarithm loge X is computed by
procedure LnX (var x : Extended);

for any non-negative x.

f x = +INFINITY, then LnX sets x to +INFINITY and sets no exceptions.
£ x = 0, then LnX sets x to —INFINITY and sets the DIVBYZERO exception.
£ x < 0, then LnX sets x to a NaN and sets the INVALID exception.

‘he natural (base-e) logarithm loge (1 + x) is computed by

procedure LnlX (var x : Extended);

or any x >= -1,

f x = +INFINITY, then LnlX sets x to +INFINITY and sets no exceptions.



2 The Elems Unit

f x = =1, then LnlX sets x to -INFINITY and sets the DIVBYZERO

»xception, If x < -1, then LnlX sets x to a NaN and sets the INVALID
*Xception. :

'he method of computing this value does not explicitly add 1 to X, and
;0 1s not equivalent to

12X (1, omne); { one <~- 1,0 }
AddX (one, x); { x <~= 1.0 + x }
LnX (x);

‘here one is an Extended variable. Procedure LnlX is especially useful
or handling financial applications. If the input argument x is a small
ositive value, such as an interest rate, the computation of LnlX (x) is

'ore precise than the sequence above, since no precision is lost in x by
he addition of 1.

Zxponentials

rocedures Exp2X, ExpX, and ExplX each operate on an Extended variable,
eturning the result in the input argument. Procedure XpwrI operates on
n Extended variable using an integer value, returning the result in the
xtended input argument, Procedure XpwrY operates on two Extended
ariables, returning the result in the second input argument.

procedure Exp2X (var x : Extended);

1@ procedure Exp2X calculates 2% and returns this value to X.

© x = +INFINITY, then Exp2X sets x to +INFINITY. If x = ~INFINITY,
en Exp2X sets x to 0. Neither case sets any exceptions.
procedure ExpX (var x : Extended);

1e procedure ExpX computes e and returns this value to X.

 x = +INFINITY, then ExpX sets x to +INFINITY. If x = —INFINITY, then
:pX sets x to O. Neither case sets any exceptions.

procedure ExplX (var x : Extended);
e procedure ExplX computes e® = 1 and returns this value to X,

x = +INFINITY, then ExplX sets x to +INFINITY. If x = -INFINITY,
en ExplX sets x to —-1. Neither case sets any exceptions.

'is procedure, like LnlX, is especially useful for small input
guments, as the result is computed without explicitly subtracting 1
om e”; thus, the computation is more precise than if ExpX were used.



Exponentials 43

procedure Xpwrl (i : integer; var x : Extended);
i
The procedure Xpwrl computes x and returns this value to x.

If x is normal, denormal, infinite, or zero, then Xpero(O, X) returns
x = 1; in particular, if x = 0 or x is infinite, then x" = 1.

procedure XpwrY (y : Extended; var x : Extended);

y

The procedure XpwrY computes x° and returns this value to X.

XpwrY sets x to a NaN and signals INVALID if
- both x and y equal 0;
- x =1 Aﬁd y is»infinite; or
- X is negative ér -0 and y is nonintegral.

If x is +0 and y is negative, then XpwrY sets x to

+INFINITY and sets the DIVBYZERO exception. If x is -0 and y is
integral and negative, then XpwrY sets x to +INFINITY if y is even, or
to -INFINITY if y is odd, and sets the DIVBYZERO exception.

Financial Functions

The Elems unit provides two procedures, Compound and Annuity, that can
be used to solve various financial problems. Each of these procedures
takes two input arguments of type Extended, and produces an Extended
result. The two input arguments, r and n, represent in each case an
interest rate and a number of periods, respectively.

Compound Interest

Compound interest can be computed using

procedure Compound (r, n : Extended; var x : Extended);

This procedure computes the value

x := (1 + r)n,

where r is the interest rate and n is the number of periods.

If r < -1, then Compbund sets x to a NaN and sets the INVALID exception.
If r = 0 and n is infinite, then Compound sets x to a NaN and sets the
INVALID exception. If r = -1 and n < O, then Compound sets X to
+INFINITY and sets the DIVBYZERO exception.

If PV is the present value of a given amount of principal to be invested



4 The Elems Unit

:t the rate of interest r for n periods, then FV, the future value of
his principal, is

FV = PV * (1 + r)™.

xample

f $1000 is invested for 6 years at 9% compounded quarterly, then what
s the future value of the principal? Compute

var r, n, four, years, rate, PV, FV : Extended;
f : DecForm;
s ¢ DecStr;

with £ do begin style t= FIXED; digits := 2 end;

12X (4, four); { four <~- 4 }
12X (6, years); { years <~- 6 }
Str2X ('0.09', rate); { rate <-- 9% }
12X (1000, PV); { PV <~= 1000.00 }
¥ := rate;

DivX (four, r); { £ <~= rate / 4 }
n := years;

MulX (four, n); { n <=4 % years }
Compound (r, n, FV); { FV <-= (1 + r)*n }
MulX (PV, FV); { FV<-= PV * (1 + r)"n }
X2str (f, FV, s); { £ is FIXED with 2 fraction digits.}

writeln ('FV = §', s);
1ie future value FV is § 1705.77.

te that since the future valugnFV =PV * (1 + r)n, then the
‘esent value PV = FV * (1 + r) .,

ample

w much must a person invest today at 9% compounded quarterly to have
5,000 in his account in 6 years? Assuming f, rate, years, r, and n
ve values as in the example above, compute



Financial Functions 45

var r, n, nn, four, years, rate, PV, FV : Extended;
f : DecForm;
s : DecStr;

12X (15000, FV); { FV <-=- 15000.00 }
nn := n;

NegX (nn); { nn <=~ -n }
Compound (r, nn, PV); { PV <-= (1 + r)"-n }
MulX (FV, PV); { PV <~= FV * (1 + r)"-n }
X2Str (£, PV, s8); { f is FIXED with 2 fraction digits.}

writeln ('PV = $§', s);

The pre#éntAvalue PV is $§ 8793.70.

Value of an Annuity

The present value and future value of an annuity can be computed using
procedure Annuity (r, n : Extended; var x : Extended);

This procedure computes the value

1=+
r

X = R

where r is the interest rate and n is the number of periods.

If r = 0, then the procedure computes the sum of 1 + 1 + ... + 1 over n
periods, and therefore returns x = n, and no exceptions are set (this
value n corresponds to the limit as r approaches 0). If r < -1, then
Annuity sets X to a NaN and sets the INVALID exception. If r = -1 and n
> 0, then Annuity sets x to +INFINITY and sets the DIVBYZERO exceptiom.

This procedure, together with the procedure Compound, can be used to
solve a variety of financial problems. An annuity is a sequence of
equal payments made at equal time intervals, such as loan payments,
stock and bond dividends, or life insurance premiums. The present
value of an annuity is the sum of the present values of the several
payments, each discounted to the beginning of the term. This value can
be expressed as

where PMT is one payment.



+6 The Elems Unit

=xample

suppose that a loan at 12% compounded monthly is to be paid off at a
cate of $225 per month in 36 months. What is the present value of the
Loan? Compute

var r, n, twelve, rate, PV, PMT : Extended;
f : DecForm;
s ¢ DecStr;

L3N )

with f do begin style := FIXED; digits := 2 end;

—

12X (12, twelve); { twelve <= 12 }
Str2X ('0.12', rate); { rate <-- 12% }
Str2X ('36', n); { n <~ 36 }
I2X (225, PMT); { PMT <~- 225.00 }
r := rate;

DivX (twelve, r); { r <~= rate / 12 }
Aanuity (r, n, PV); { PV <K—- (1 =-(l+1)*~n)/r }
MulX (PMT, PV); { PV LK== PMT * (1 -~ (1 + r)*n) / r }
X2Str (£, PV, s); { f is FIXED with 2 fraction digits.}

writeln ('PV = $', s);
he present value PV is $ 6774,.19.

he future value of an annuity is the sum of the compound amounts of
he payments, each accumulated to the end of the term. This can be
xpressed as

S ¢ . ) N )

his value is jusf

FV = PMT * (1 + r)™ % -=-2-32.T.L) __

nd so can be computed accurately using the procedures Compound and
anuity,

xample

f $50 is deposited each month to a savings account that pays 12%
ompounded monthly, what is the future value of the account after 10
2ars? Compute



Financial Functions 47

var r, n, twelve, rate, years, FV, PMT, t : Extended;
f : DecForm;
s : DecStr;

with f do begin style := FIXED; digits := 2 end;

12X (12, twelve); { twelve <-- 12 }
Str2X ('0.12', rate); { rate <-- 127 -}
12X (10, years); { years <-- 10 }
12X (50, PMT); { PMT <-- 50.00 }
r := rate;

DivX (twelve, r); { r <~- rate / 12 }
n := years;

MulX (twelve, n); { n {~= years * 12 }
Compound (r, n, t); {t <= (1+1r)"m }
Annuity (r, n, FV); { FV <-- (1 = (1 + r)%n) / r }
MulX (t, FV); { FV <= ((1 + )™ n-1)/r }
MulX (PMT, FV); { FV <= PMT * ((1 + r)*n=-1) / r }

X2Str (f, FV, s); { £ is FIXED with 2 fraction digits.}
writeln ('FV = $§', s);

The final value FV is $ 11501.93.






A
The SANE and Elems Interfaces

Here are the INTERFACE sections of the SANE and Elems units.
{$C Copyright Apple Computer, Inc., 1983 }
UNIT Sane { Standard Apple Numeric Environment } ;

INTRINSIC CODE 23 DATA 24;

INTERFACE
CONST
SIGDIGLEN = 28; { Maximum length of Sighig. }
DECSTRLEN = 80; { Maximum length of DecStr. }
TYPE
{mmmm e e i e i s o e o e
** Numeric types.
___________________ }
Single = array [0..1] of integer;
Double = array [0..3] of integer;
Comp = array [0..3] of integer;
Extended = array [0..4] of integer;
{ e
**% Decimal string type and intermediate decimal type,
** representing the value (-1)%sgn * 10%exp * sig
________________ }
SigdDig = string [SIGDIGLEN];
DecStr = string [DECSTRLEN];
Decimal = record
sgn : 0..1; {Sign (0 for pos; 1 for neg }
exp : integer; {Exponent }
sig : Sighig {String of significant digits }

end;



50 The SANE and Elems Interfaces
¢

*%* Modes, flags, and selections.

———— e D |

Environ = integer;
RoundDir = (TONEAREST, UPWARD, DOWNWARD, TOWARDZERO);
RelOp = (GT, LT, GL, EQ, GE, LE, GEL, UNORD);

{> < O = >= (= <=>}
Exception = (INVALID,UNDERFLOW,OVERFLOW,DIVBYZERO, INEXACT);
NumClass (SNAN, QNAN, INFINITE, ZERO, NORMAL, DENORMAL);
DecForm record
style : (FLOAT, FIXED);
digits : integer

- — > " - - —— — - — —— T~ — — " -~ — . —— — 4 T - - - —— — — — A —— " o " oo o s W o

procedure AddS (x : Single; var y : Extended);
procedure AddD (x : Double; Var y : Extended);
y
y

procedure AddC (x : Comp; var y : Extended);
procedure AddX (x : Extended; Var y : Extended);
{y:i=y+x} N
procedure SubS (x : Single; var y : Extended);
procedure SubD (x : Double; var y : Extended);
procedure SubC (x : Comp; var y : Extended);
procedure SubX (x : Extended; var y : Extended);
{y:=y-x} "'—'
procedure MulS (x : Single; var y : Extended);
procedure MulD (x : Double; Var y : Extended);
procedure MulC (x : Comp; var y : Extended);
procedure MulX (x : Extended; var y : Extended);
Ty =y *x} -
procedure DivS (x : Single; var y : Extended);
procedure DivD (x : Double; ~Vvar y : Extended);
procedure DivC (x : Comp; var y : Extended);
procedure DivX (x : Extended; Vvar y : Extended);
{y:=y/ x} e

function CmpX (x : Extended; r : RelOp; y : Extended) : boolean;

{CmpX :=xr vy}

function RelX (x, y : Extended) : RelOp;
{ x RelX y, where RelX in [GT, LT, EQ, UNORD] }



The SANE and Elems Interfaces 51
¢

{_--.._......-.._.-....--..- - . 2 2 0 2 s —————

** Conversions between Extended and the other numeric types,
** jncluding the type integer.

.................................................................... }
procedure 12X (x : integer; var y : Extended);
procedure S2X (x : Single; var y : Extended);
procedure D2X (x : Double; var y : Extended);
procedure C2X (x : Comp; var y : Extended);
procedure X2X (x : Extended; var y : Extended);
v := x (arithmetic assignment) }
procedure X2I (x : Extended; var y : integer);
procedure X2S (x : Extended; var y : Single);
procedure X2D (x : Extended; var y : Double);
procedure X2C (x : Extended; var y : Comp);
Iy := x (arithmetic aSQigEEEht) }
Ok RS I EE SR o i e 4 2 S i i o8 4 0
** Conversions between the numeric types and the intermediate
** decimal type.
................................................. }

procedure S2Dec (f : DecForm; x : Single; var y : Decimal);
procedure D2Dec (f : DecForm; x : Double; var y : Decimal);
Pprocedure C2Dec (f : DecForm; x : Comp; var y : Decimal);
procedure X2Dec (f : DecForm; x : Extended; var y : Decimal);

y := x (according to the format f) }

procedure Dec2S (x : Decimal; var y : Single);
procedure Dec2D (x : Decimal; var y : Double);
procedure Dec2C (x : Decimal; var y : Comp);

procedure Dec2X (x : Decimal; var y : Extended);

T {y=x}

{ i om0 s e et o e o s o
** Conversions between the numeric types and strings.

*% (These conversions have a built-in scanner/parser to coavert

** between the intermediate decimal type and a string.)

...... . ——— - - }

procedure S2Str (f : DecForm; x : Single; var y : DecStr);
procedure D2Str (f : DecForm; x : Double; var y : DecStr);
procedure C2Str (f : DecForm; x : Comp; var y : DecStr);
procedure X2Str (f : DecForm; x : Extended; var y : DecStr);

y := x (according to the format f) }

procedure Str2S (x : DecStr; var y : Single);
procedure Str2D (x : DecStr; var y : Double);
procedure Str2C (x : DecStr; var y : Comp);
procedure Str2X (x : DecStr; var y : Extended);

{y:=x}



52 The SANE and Elems Interfaces
¢

procedure RemX (x : Extended; var y: Extended; var quo: integer);

T [ (new y) := (0ld y) - x * T, where n is thé—T‘teger closest
toy / x (n is even in case of tie).

quo = low order seven bits of the integer quotient n,

so that =127 <= quo <= 127, }

procedure SqrtX (var x : Extended);

T {x :=sqrt (x) T

procedure RintX (var x : Extended);

T { x := rounded to integral value of x }

procedure NegX (var x : Extended);

T {x = -x } -

procedure AbsX (var x : Extended);
Tx = |x| }

procedure CpySgnX (var x : Extended; y : Extended);
X := x with the sign of y }

procedure NextS$S (var x : Single; y : Single);
procedure NextD (var x : Double; y : Double);

procedure NextX (var x : Extended; y : Extended);
[ x := next representable value from x toward y }

function ClassS (x : Single; va
function ClassD (x : Double; var sgn integer) : NumClass;
function ClassC (x : Comp; var integer) : NumClass;
function ClassX (x : Extended; Var sgn : integer) : NumClass;
{ sgn := sign of x (0 for pos,—T_for neg) }

integer) : NumClass;

<

Risin
» »
0g [15)
=] =]

a3

procedure ScalbX (n : integer; var y : Extended);
T Iy =y *2%n}

procedure LogbX (var x : Extended);

~ { returns unbiased exponent of x }

- - - - o

——————— et = e —— B . - }

procedure SetRnd (r : RoundDir);
procedure SetEnv (e : Environ);

function GetRnd : RoundDir;

procedure GetEnv (var e : Environ);

function TestXcp (x : Exception) : boolean;
procedure SetXcp (x : Exception; OnOff : boolean);
function TestHlt (x : Exception) : boolean;
procedure SetHlt (x : Exception; OnOff : boolean);




The SANE and Elems Interfaces 53
"

{$C Copyright Apple Computer Inc., 1983 }

UNIT Elems;

INTRINSIC CODE 18 DATA 19;

{ - — - ——— ———

INTERFACE

USES SANE

procedure Log2X (var x : Extended);

x := log2 (x) |

procedure LnX (var x : Extended);

X := 1n (X) |

procedure LnlX (var x : Extended);
X := 1n (1 ¥ %) }

procedure Exp2X (var x : Extended);
X := 2°x }

procedure ExpX (var x : Extended);
X :=e”x }

<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>